
 

 
152 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025 

 Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025 

Available at www.rjetm.in/ 

Intelligent Control of Hybrid Solar-Wind Systems: 

ANN-Based Optimization for Power Quality and 

Grid Integration 
1Dhanraj, 2Amit Kumar Asthana 

1Research Scholar, Department of Mechanical Engineering, Truba Institute of Engineering & Information 

Technology Bhopal (M.P.) India 
2Assistant Professor, Department of Mechanical Engineering, Truba Institute of Engineering & Information 

Technology Bhopal (M.P.) India 

dhanrajy088@gmail.com, asthana603@gmail.com 
 

Abstract— In the present research work, emphasis has been 

laid on modelling, simulating, and optimizing the performance 

of a hybrid solar–wind energy system that is connected to the 

grid through MATLAB/Simulink. The study aims at increasing 

the system efficiency under steady and unsteady environmental 

conditions and enhancing its stability with the integration of 

intelligent control strategies. Two methods of converter control 

are implemented and compared: one being the classical 

Perturb and Observe (P&O) algorithm, and the other being an 

Artificial Neural Network (ANN)-based adaptive control 

approach. The hybrid system comprises PV and wind energy 

units interlinked through DC–DC converters with a common 

DC link and a DC–AC inverter for supplying three-phase AC 

power compatible with the grid. The methodology, dynamic 

modelling of PV and wind subsystems, converter design, and 

inverter control using SPWM, is employed. The P&O algorithm 

controls the duty cycle of the converters by perturbing them 

iteratively; the ANN controller, on the other hand, uses trained 

data on solar irradiance, temperature, and voltage-current 

characteristics to predict and control maximum power points 

in real time. Simulation under constant or variable irradiation 

elucidates the better performance of ANN control with reduced 

Total Harmonic Distortion (THD) in voltage (0.14%) and 

current (2.10%), respective to 0.15% and 2.45% in a P&O 

controlled system. In addition, an improvement of 5% will be 

given to active power output by ANN control. The voltage 

stability has also been enhanced, along with reducing DC link 

oscillations under transient conditions. These results exemplify 

that intelligent ANN controllers provide aptness, acts fast, and 

improve power quality for hybrid renewable systems, giving a 

better new direction for grid-interactive renewable integration 

in the days to come. 

Keywords — Hybrid renewable system, ANN controller, 

Perturb and Observe (P&O), MATLAB/Simulink, Maximum 

Power Point Tracking (MPPT), DC–DC converter, Total 
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I. INTRODUCTION  

The increasing global needs for clean, sustainable, and efficient 

energy sources have accelerated the development of HRES by 

which multiple renewable sources such as solar PV and wind 

energy are integrated to feed power into a grid in a stable 

fashion [1]– [15]. Individually, both solar and wind resources 

are intermittent and influenced by weather variability; however, 

being complementary, they make a stronger case for reliability 

and decreasing fossil fuel dependency [1], [2]. Hybrid solar-

wind systems emerge as good candidate systems for distributed 

generation, rural electrification, and possibly grid support 

applications. 

Their potential notwithstanding, integration of the solar and 

wind systems poses big challenges regarding power 

management, voltage regulation, and grid stability [3]. The 

variations in irradiance, temperature, and wind speed cause 

drastic variations in power output leading to voltage sags, 

frequency deviations, and harmonic distortions. Hence, 

intelligent control strategies, along with robust optimization 

algorithms, must be taken into account to guarantee the power 

quality, facilitate maximum power point tracking (MPPT), and 

ensure efficient operation under varying conditions [4], [5]. 

Recently, some investigations have engaged in more advanced 

techniques such as metaheuristic optimization, artificial 

intelligence, and adaptive control systems. Among these 

methods, Artificial Neural Networks have grown to be 

powerful tools that can specify nonlinear relationships and 

adapt to changing inputs without explicit mathematical 

modelling [6]. ANN-based MPPT controllers have shown a 

much better dynamic response, fast convergence, and 

performance when compared to traditional methods such as 

Perturb and Observe and Increment Conductance [7]. 

In hybrid systems, ANNs are used to process environmental 

data such as solar radiation, temperature, and wind speed to 

predict the optimum operating point and vary the duty cycle of 

the converter accordingly [8]. Adaptive control helps to 

minimize oscillations around the maximum power point, lessen 

response time, and reduce the effect of partial shading and 

turbulence. On the other hand, classical methods like P&O, 

though simple and cheap solutions, demonstrate steady-state 

oscillations and lower efficiency in the face of quickly varying 

environmental conditions [9]. 

Power quality is the other crucial aspect in hybrid renewable 

systems. Renewable generation fluctuations may cause 

harmonic distortion, voltage sags, swells, or frequency 

deviations when fed into the grid. To compensate for such 

variations, the systems have been controlled by means of 

techniques such as sinusoidal pulsewidth modulation (SPWM), 

space vector modulation (SVM), and intelligent inverter control 

methods [10]. In the presence of nominal disturbances, 

traditional control strategies usually satisfy the objectives, but 

during transient disturbances or fluctuating load conditions, 

they cannot perform well enough. On the other hand, intelligent 
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control schemes, especially those based on ANN, have shown 

good potential for voltage stability, reactive power 

compensation, and THD minimization [11]. Figure 1 describes 

Power system and control block diagram 

 

 
Figure 1: Power system and control block diagram 

Making an emphasis on the relevance of hybrid converter 

architecture yields improvements in systems. For example, 

allowing the DC-DC converters for PV and wind inputs to 

interface into the same DC-link guarantees proper power flow 

and voltage regulation at the output of which is fed to the 

inverter [12]. In addition to this, IGBT type converters and 

inverters ideally enhance dynamic response and switching 

efficiency. In this case, the ANN controller ought to send real-

time control signals to converters for optimum energy flow and 

maintain grid synchronization even when conditions are non-

stationary [13]. 

Simulation and modelling tools such as MATLAB/Simulink 

are fundamental in the analysis and validation of hybrid 

renewable energy systems. The control strategies and power 

quality parameters such as total harmonic distortion (THD) are 

evaluated, with the system being tested under various 

environmental circumstances before the actual control 

hardware is implemented [14]. The simulation process has 

shown that the ANN-based hybrid systems are much better than 

the classical methods in regulating voltage, suppressing 

harmonics, and harvesting energy. 

Moreover, hybrid control architectures that incorporate 

multiple layers of control (primary, secondary, and tertiary) 

enable hierarchical coordination of distributed energy 

resources. Primary control is primarily concerned with the real-

time operation of the converters. Secondary control restoration 

is voltage and frequency. Tertiary control optimizes the 

exchange of energy with the grid. An ANN on top of these 

control layers will afford greater flexibility, contributing to the 

learning process and enabling intelligent decision-making in a 

dynamic grid environment. 

II. LITERATURE REVIEW 

According to recent studies, it was found that hybrid deep 

architectures, principally combinations of CNNs and LSTMs, 

outperform traditional models in short-term power generation 

and demand forecasting [16]. These models efficiently extract 

the spatial and temporal dependencies, approximately 12% 

reduction in RMSE, and improvement in R² from 0.86 to 0.92 

compared to standalone LSTM models. Furthermore, 

regression-based deep models-Multilayer Perceptron’s (MLP) 

and LSTM frameworks-have obtained MAE values of below 

0.05 (normalized) and RMSE values close to 0.1 when trained 

on SCADA and meteorological datasets, demonstrating their 

robustness during dynamic sky and irradiance conditions [17]. 

Recurrent and hybrid architectures have calculated deeper 

confirmation in terms of forecasting in deep learning. Two 

hybrid models-the CNN–LSTM and the GRU–LSTM-are 

repeatedly reported in the literature to produce better results 

when compared to their standalone counterparts, with 

improvements oscillating between 10 and 20% in terms of 

RMSE across different datasets [18] – [20]. Feature engineering, 

with features such as irradiance, temperature, humidity, and 

wind speed, assists in enhancing predictive accuracy by 6–8%, 

while metaheuristic optimization of the selection of input 

variables helps the model quickly converge and reduces error 

propagation [21]. 

LSTM-based models outperform classical algorithms, such as 

ARIMA and basic MLP systems, with respect to RMSE and 

MAE, when benchmarked across large-scale datasets, 

validating the former ones' ability to learn nonlinear temporal 

dependencies of renewable datasets [22]. In addition to that, 

these advantages with enormous computational overheads and 

longer training times limit the use of these models for real-time 

applications [23]. The development of standard benchmarking 

frameworks and open datasets has become crucial to ensure 

reproducibility and merit-based comparison of models [24]. 

The hybrid dual-cascaded framework seems among the most 

powerful, achieving prediction performance well above 0.90 in 

R² value, with a significantly lower RMSE score than any other 

individual architecture [25]. The hybrid models are also 

designed to eliminate redundant meteorological inputs through 

a metaheuristic feature selection method, thereby reducing the 

computational burden and enhancing generalization 

performance [26]. Further, the advanced GRU–LSTM model-

based online adaptive learning approaches were able to obtain 

lower RMSE values down to 0.026 p.u., with accuracies 

exceeding 96% for multi-step-ahead forecasting [27], thus 

creating a challenge or opportunity to be implemented in real-

time hybrid systems. 

Several more AI techniques, including highly optimized 

versions of MLPs, RBF networks, and SVR, are used for 

forecasting renewable energy. One example of this is 

Levenberg–Marquardt-optimized MLP models showing an R² 

of approximately 0.91 and an RMSE improvement of around 7% 

over traditional backpropagation networks [28]. RBF-based 

models are also noted for their superiority in giving high 

correlation coefficients (R ≈ 0.96) with the prediction of wind 

speed yet are computationally intensive during clustering and 

training [29]. 

Moreover, evidence of a broader application of AI models 

resides in their utilization in PV system fault detections and 

reliability assessments. These CNN-based fault detection 

models have thus far reported accuracies greater than 98%, 

higher than those achieved by classic classifiers such as MLP 

and SVM [30]. Likewise, hybrid architectures of deep learning 

have been employed in different activities related to predicting 

wind power ramping events, achieving an AUC score of 0.93 

and an accuracy greater than 95%, beating GRU and MLP 

baselines by about 6-8% [31]. 

Nevertheless, scalability, interpretability, and real-time 

implementation remain the challenges for forecasting methods 
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based on AI. Demanding training costs possibly restricted 

deployment of DL architecture in the resource-constrained 

environment, as well as the need for large amounts of labelled 

data and hardware prerequisites [32]. Also, given inconsistent 

data preprocessing and benchmarking techniques across studies, 

conducting cross-comparisons has become difficult and 

impeded standardization [33]. 

A lightweight AI models that can be explained and transferred 

will need to be built while the predictive power has to remain 

high, but with significantly reduced computational costs [34]. 

The integration of reinforcement learning with an online 

adaptive mechanism fosters a self-learning control system to 

make decisions in real-time for hybrid solar–wind energy 

management [35]. With these improvements, grid stability, 

operational reliability, and power quality will greatly benefit in 

the next generation of intelligent renewable energy systems. 

TABLE 1 ARTIFICIAL NEURAL NETWORKS FOR POWER SYSTEMS 

Ref. Technique / Model Dataset / 

Application 

Performance Metrics Limitations 

[16] CNN–LSTM hybrid Multi-site demand & 

weather data 

RMSE ↓12%, R² = 0.92 High training cost, requires 

long historical data 

[17] MLP, LSTM regressors + 

ensemble trees 

PV SCADA + 

meteorological data 

MAE ≈ 0.046, RMSE ≈ 0.11, R² 

≈ 0.88–0.92 

Sensitive to weather and sky 

variability 

[18] CNN, LSTM, MLP 

(comparative review) 

Multiple PV datasets R² = 0.85–0.95 Inconsistent benchmarking 

and preprocessing 

[19] LSTM-based forecasting Utility-scale PV plant R² > 0.90, RMSE ↓ Limited to single-site 

validation 

[20] LSTM, GRU, CNN–

LSTM, RF, SVR 

comparison 

Hybrid wind–solar 

datasets 

MSE ≈ 0.010, R² ≈ 0.90 Dataset-dependent; sensitive 

to preprocessing 

[21] LSTM vs. ARIMA and 

MLP 

Large utility PV 

datasets 

RMSE ↓15–20% vs. traditional 

models 

High computational cost, long 

data history 

[22] LSTM with feature 

selection 

PV forecasting RMSE ↓6–8% improvement Small dataset, hyperparameter 

sensitivity 

[23] SCADA + NWP hybrid 

LSTM 

Regional PV sites RMSE ↓ vs. baseline regression Relies on real-time NWP data 

availability 

[24] CNN–LSTM–MLP 

hybrid 

Solar radiation 

prediction 

R² > 0.90, RMSE ↓ Complex architecture, long 

training duration 

[25] LSTM–GRU hybrid Wind and solar 

generation 

MAE = 12.93, RMSE = 21.83 Dataset limited; lacks wide 

benchmarking 

[26] Comparative ML models 

(ANN focus) 

Solar generation 

forecasting 

MAE/RMSE reduced across 

models 

Unclear attribution between 

preprocessing and model gain 

[27] Review of RBF, MLP, 

and LSTM 

Wind energy 

forecasting 

Aggregated metrics (RMSE, 

MAE, R²) 

Review only; no new 

experiments 

[28] ML/ANN technology 

survey 

Power systems 

applications 

RMSE, MAE, accuracy, 

precision benchmarks 

Non-empirical; lacks practical 

evaluation 

[29] MLP with Levenberg–

Marquardt optimization 

NREL solar 

irradiance dataset 

RMSE = 18 W/m², R² = 0.91 Overfitting risk; low 

scalability 

[30] MLP classifier Smart-street energy 

detection 

Accuracy = 92.4% Urban-use specific; non-grid 

context 

[31] Benchmark of LSTM, 

CNN–LSTM, deep MLP 

Multi-renewable 

datasets 

Detailed RMSE and R² tables Preprint; not peer-reviewed 

[32] GRU–LSTM hybrid Indian renewable 

datasets 

MAE = 0.018, RMSE = 0.026, 

Accuracy = 96.8%, F1 = 0.955 

Long training; reduced 

interpretability 

[33] Radial Basis Function 

(RBF) neural network 

Hybrid microgrids MAE = 0.23 m/s, RMSE = 0.34 

m/s, R = 0.96 

High computational demand 

[34] CNN-based PV fault 

detection 

PV monitoring 

datasets 

Accuracy = 98.6%, Precision = 

97.9%, Recall = 98.4%, F1 = 

0.981 

Requires labeled data for 

training 

[35] LSTM hybrid with 

adaptive learning rate 

Wind ramp event 

prediction 

AUC = 0.93, F1 = 0.91, 

Accuracy = 95.2% 

GPU-intensive; sensitive to 

missing data 

 

A.  
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III. RESEARCH OBJECTIVES 

 The primary objective of this study is to design and 

implement a Hybrid Solar-Wind Energy System 

equipped with a Neural Network-Based Controller to 

optimize power generation, improve system reliability, 

and ensure stable integration with the power grid.  

 To study the system under stable and dynamic input 

conditions and train the model to adapt to the changes 

 To ensure grid compliance by minimizing harmonics and 

maintaining stable voltage and frequency levels in the 

output power. 

IV. RESEARCH METHODOLOGY  

A. Designing of Hybrid Energy System 

A hybrid AC grid-connected system is modelled to maintain a 

reliable supply of power with solar or wind energy resources 

being used at any given time, depending on their real-time 

forecast. The configuration allows for dynamic source 

selection, increasing system dependability and reducing 

interruptions. The design of the hybrid energy system is at the 

heart of the methodology to elegantly integrate solar and wind 

power for efficient, stable, and continuous energy delivery. 

The system uses the complementary behaviour of the two 

renewable sources where the availability of one can mitigates 

the variability of the other, thus facilitating energy consistency 

and grid resilience. Figure 2 shows the block diagram of the 

designed hybrid solar-wind system, which provides power to 

both the connected load and the electrical grid. The two major 

renewable generation units employed in the system are the PV 

array and wind turbine module. The PV module provides a DC 

electric power from sunlight irradiance passed through a DC–

DC boost converter. The main function of this converter is to 

increase the voltage to a level suitable for operational load; in 

addition, it implements Maximum Power Point Tracking 

(MPPT) control either using Perturb or Observe (P&O) or 

ANN-based method to attain the maximum power under 

different environmental conditions. 

 
 

Figure 2: Hybrid energy system topology 

P&O is hugely popular as an MPPT algorithm for its ease of 

implementation with low cost. Mostly this is the low power 

applications like for residential and commercial applications. 

In this strategy, the present duty point is decided based on 

voltage and power values, i.e., the present power and voltage 

values are compared with the previous. Then, by virtue of 

changing the duty value, the Duty Point is steered toward the 

MPP shown in figure3. 

 
Figure 3: Perturb and Observe (P&O) scheme for driving 

the converters in hybrid system 

 

B. ANN based control system design for converters 

Artificial Neural Networks (ANNs) refer to information-

processing systems set up via an analogy with the neural 

architecture of a human brain. They are deemed capable of 

extracting underlying patterns from complex datasets and 

learning input–output relationships amid noise and 

uncertainties. Structurally speaking, an ANN is a network of 

interconnected processing elements called neurons. The 

neurons are organized into three layers: input layer, hidden 

layer, and output layer. The interconnection between two 

neurons is represented using a synaptic weight with the 

magnitude and the direction forming the signal transmitted 

between two neurons; considered collectively, weights govern 

how information and signal transformations are propagated 

across networks. An ANN, therefore, can map input variables 

to predicted output responses nonlinearly using a set of transfer 

functions and can thus model complex dynamic systems 

adequately. Figure 4 describes MLP structure of NN method 

 
Figure 4: MLP structure of NN method 
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Figure 5: NN controller Technique for driving converter 

The system basically updates synaptic weights of a network by 

the backward propagation of an error gradient through the 

layers. Given that the gradient vector is the differential with 

respect to all parameters of an error function, the error signal 

is generally found by the difference between the network 

output and the desired output. Thus, fixed outputs for the 

training set must be provided; therefore, the whole training 

process becomes a supervised training approach. Consider a 

neuron residing in the output layer and call that neuron j. 

Figure 5 NN controller Technique for driving converter 

𝑒𝑗(𝑛) = 𝑑𝑗 − 𝑦𝑗(𝑛)                               (1) 

where j d is the desired output for neuron j and y (n) j is the 

actual output for neuron j calculated by using the current 

weights of the network at iteration n. For a certain input there 

is a certain desired output, which the network is expected to 

produce. Instantaneous value of the error energy for the neuron 

j is given in Equation (2): 

𝜖𝑗(𝑛) =
1

2
   𝑒𝑗

2 (𝑛)                                 (2)                            

Since the only visible neurons are the ones in the output layer, 

error signals for those neurons can be directly calculated. 

Hence, the instantaneous value, ε (n), of the total error energy 

is the sum of all (n) j ε ’s for all neurons in the output layer, as 

given in Equation (3) 

𝜀(𝑛) =
1

2
   ∑ 𝑒𝑗

2 (𝑛)

𝑗𝜖 𝑄

                       (3)           

where Q is the set of all neurons in the output layer. Suppose 

there are N patterns in the training set. The average squared 

energy for the network is found by Equation (4) 

𝜖𝑎𝑣 =
1

𝑁
   ∑ 𝜖

𝑁

𝑛=1
 (𝑛)                            (4)      

It is worthwhile to note that the instantaneous error energy, 

ε(n), and consequently the average error energy, 𝜖𝑎𝑣  would 

essentially be a function of all adjustable parameters of the 

network, among which are the synaptic weights and bias 

levels. Provided with this algorithm, it is indeed possible to 

adjust the values of these parameters for the minimization of 

𝜖𝑎𝑣The backpropagation algorithm exists in two forms: one 

sequential and the other batch. In sequential mode (or on-line 

or stochastic), changes in the weights occur after the 

presentation of every training sample; in batch mode, the 

weights are updated after all samples in the training set have 

been presented once--within one epoch.  

C. DC-AC Converter/Inverter Modelling 

The paragraph was rewritten to align with technicality, 

coherence, and structure, while faithfully including all 

technical details: 

An inverter is the power electronic device that basically 

converts a DC to an AC wave. For use in distributed energy 

generation systems such as rooftop solar arrays, small-scale 

microgrids, and residential power setups, the inverter 

represents the interface window between the DC sources and 

the AC grid. It comes in two common configurations—single-

phase and three-phase inverter. The three-phase inverter thus 

has three arms, with two switching devices per arm, the 

switching being performed with a 180° phase shift. Fig. 4.10 

illustrates the internal structure of the three-phase inverter. 

 The inverter designed uses Sinusoidal Pulse Width 

Modulation (SPWM) in order to generate a higher quality 

sinusoidal wave and is modelled and simulated for the hybrid 

solar–wind system. The control strategy for the inverter 

depends on some parameters, which include the DC-link 

voltage, grid voltage, grid current, and switching frequency. A 

two-stage PWM regulator is implemented for control of the 

signals so that both voltage and current get accurately 

controlled. Measurements of the grid voltage are carried out 

by a separate voltage measurement unit located at the inverter-

grid interface. Voltage and current signals are filtered against 

harmonics before being used to generate a pure sinusoidal 

wave. 

 Dependent on operating conditions, the inverter may work in 

either 180° or 120° conduction mode to provide a balanced 

level of output among the three phases. The circuit acts as an 

essential component in converting the DC power from the 

hybrid solar–wind system to useable, stable, and fine-quality 

AC power that can be connected to the grid or supplied to the 

load. The addition of IGBT-based switches provides efficient 

high-speed switching and a more precise control mechanism. 

The inverter operation is therefore dynamically optimized in 

conjunction with an ANN-based or P&O MPPT controller to 

allow it to perform well and be efficient during varying 

environmental conditions. Figure 6 describes Circuit diagram 

of three phase inverter 
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Figure 6: Circuit diagram of three phase inverter 

If the upper IGBT of a leg is switched alternately with that of 

the lower one (IGBT1 and IGBT4 in this example), there will 

appear a voltage at the output terminal, say A, with respect to 

the negative bus. Repetitions of this process are applied from 

the three legs (A, B, C), apart from a 120° phase displacement, 

to develop three-phase AC output. Under the ANN control, the 

dynamic response developed by the IGBT gate control ensured 

smooth transitions and voltage regulation that were superior to 

the conventional P&O-based control 

V. RESULTS AND DISCUSSION 

The design and simulation of a renewable solar-wind hybrid 

energy system with MATLAB/Simulink are discussed here. 

Two possibilities were explored for the optimization of the 

control strategy: MPPT based on P&O and one based on ANN. 

The controller based on ANN features better adaptability to 

changing conditions and on realizing a higher efficiency and 

power stability. So, intelligent control techniques can greatly 

improve the functioning of hybrid energy systems and grid 

reliability. 

A.  Assessment with the constant input irradiation level in 

hybrid system  

In this case study, the solar/wind hybrid energy system is 

assessed at a constant solar irradiation—in a steady and clear 

weather condition. The aim is to study how each control 

strategy performs in a theoretically favorable and steady solar 

environment: Perturb & Observe (P&O) in System 1 and 

Artificial Neural Network (ANN) in System 2. Constant 

irradiation means that the solar PV module will not be 

subjected to more frequent up and down movements in energy 

input. Hence, it is expected that the system will settle into a 

near steady-state operating point. This acts as the controlled 

system necessary to test algorithm efficiencies, responses, and 

accuracies to track in both systems. 

 
Figure 7: Input irradiation of 1000W/m2 to solar system 

Figure 7 Input irradiation of 1000W/m2 to solar system. The 

standard test condition (STC) represents an irradiance 

maintained at a constant 1000 W/m² as seen in the figure and 

commonly used in evaluating PV systems. This level of 

irradiance is considered to be under full sunlight and is 

frequently used as the reference in determining the maximum 

power output of a solar panel. 

 
Figure 8: Power output from the solar system with 

constant input irradiation level 

Figure 8 Power output from the solar system with constant 

input irradiation level. Solar power generated, having a 

maximum value of 6000 Watts, for simulation time from 0 to 

3 seconds at constant solar irradiance of 1000 Watts per square 

meter for case 1 situation. 

 
Figure 9: FFT analysis of voltage in the system 1 with 

constant input irradiation level 

Figure 9 portrays the Fast Fourier Transform (FFT) of the 

output voltage waveform of the System 1 under constant solar 

irradiance conditions (1000 W/m²). FFT is paramount for 
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assessing a waveform for harmonic content, especially in 

power electronic systems, as inverter switching tends to 

introduce undesired frequency components. 

 
Figure 10: THD% of voltage in the system 1 with constant 

input irradiation level 

Figure 10 illustrates the THD spectrum of an AC output 

voltage from System 1. This system implements a control for 

the converter based on Perturb & Observe under the constant 

illumination of 1000 W/m². The main aim of this analysis is to 

observe the Total Harmonic Distortion (THD) and thus the 

power quality of the output voltage which has been found to 

be a mere 0.15%. 

 
Figure 11: THD% of voltage in the system 2 with constant 

input irradiation level 

In Figure 11, the Total Harmonic Distortion percentage 

(THD %) was found to be 0.14% of the AC voltage waveform 

in System 2, which incorporates the ANN-based converter 

control, under fixed solar irradiance (1000 W/m²). 

 

 
Figure 12: THD% of current in the system 2 with 

constant input irradiation level 

The figure 12 shows the Total Harmonic Distortion (THD%) 

of the AC current waveform in System 2, with a THD% equal 

to 2.10%, using the ANNs-based control approach, with 

constant input irradiation of 1000 W/m². The THD% measures 

how much of the signal's content is harmonic compared to the 

fundamental (50 Hz) component in the current signal. 

 
Figure 13: Reactive Power in the system 2 with constant 

input irradiation level 

The reactive power output of System 2 under fixed solar 

irradiance of 1000 W/m² by the ANN-based control strategy 

has been shown in Figure 13. The value read is about 15.23 

kilovolt-amperes reactive (kVAR).  

A. Validation for case 1 

Table 2: Comparative assessment of different parameters 

in case 1 

Parameters Units System 1 System 2 

Voltage Volts (V) 400 400 

THD% in 

voltage 

Percentage 

(%) 

0.15 0.14 

Current Ampere (A) 75 75 

THD% in 

current 

Percentage 

(%) 

2.45 2.10 

Active Power Kilowatts 

(KW) 

47.23 49.62 

Reactive 

Power 

KVar 21.52 15.23 

Power factor - 0.91 0.956 

 

B.  Analysis with variable input irradiation level to the PV 

system 

 
Figure 14: Variable input irradiation level to the PV 

system 

Figure 14 displays solar irradiance variation (W/m²) applied to 

the solar PV system over a 3-second simulation timeframe. 

From 0 to 1 second, a fixed value of irradiance of 1000 W/m² 

is assumed to represent clear sky conditions. At 1 second, a 

sharp drop in irradiance from 1000 to 500 W/m² takes place, 

simulating partial shading or a passing cloud event. At 2 
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seconds, it reduces more to 200 W/m², representing low-light 

conditions, such as heavy cloud cover or late evening hours. 

 
Figure 15: Variable PV system output power 

Figure 15 shows solar power output in watts for System 1, 

based on a P&O control strategy, caused by a variable solar 

irradiance profile during a 3-second simulation period. This 

effectively presents the dynamic behavior of System 1 in 

tracking variable environmental conditions and the influence 

of irradiation in the solar energy generation process. 

 
Figure 16: THD% in voltage in system 1 with variable 

input irradiation level 

Figure 16 gives the information with respect to the Total 

Harmonic Distortion (THD%) which amounts to 0.05% of AC 

voltage in System 1, having P&O based control and subject to 

variable initiations of solar irradiance. The frequency spectrum 

is obtained from FFT wherein the frequency (in Hz) is 

represented along the x-axis and the y-axis shows the 

magnitude of each frequency component as a percent of the 

fundamental one. 

 
Figure 17: FFT analysis at 1 sec of AC current in system 1 

with variable input irradiation level 

The figure 17 presents the Fast Fourier Transform (FFT) of the 

AC current waveform in System 1 at the 1-second mark, 

corresponding to the period of solar irradiance shift from 1000 

W/m² to 500 W/m². 

 
Figure 18: THD% at 1 sec of AC current in system 1 with 

variable input irradiation level 

The figure 18 presents the Total Harmonic Distortion (THD%) 

in the AC current waveform in System 1 at 1 sec, whereby the 

value of solar irradiance drops from 1000 W/m² to 500 W/m². 

Having extracted the harmonic contents of the waveform from 

the FFT analysis, the THD was found to be 1.18%. It measures 

the distortion exhibited in the current waveform relative to the 

fundamental component (50 Hz). 

 
Figure 19: THD% at 2 sec of AC current in system 1 with 

variable input irradiation level 

Figure 19 plots the Total Harmonic Distortion (THD%) for the 

AC current waveform during System 1 at 2 sec, where the solar 

irradiation diminishes from 500 to 200 W/m². The THD is 

found to be 1.15% from the harmonic components obtained by 

FFT analysis, representing the distortion introduced in the 

current waveform with respect to its fundamental frequency of 

50 Hz. 

 
Figure 20: THD% in voltage in system 2 with variable 

input irradiation level 

Figure 20 shows that, for System 2 degradation, which is based 

on Perturb and Observe (P&O) controls, the AC voltage THD% 

remains almost constant at 0.05% under a variable profile of 

solar irradiance. 
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Figure 21: THD% at 1 sec of AC current in system 2 with 

variable input irradiation level 

This represents Figure 21 which presents the Total Harmonic 

Distortion (THD%) of the AC current waveform in System 2 

at 1 second, solar irradiance reduction from 1000 W/m² to 500 

W/m². Derived from the harmonic components analyzed by 

FFT, a THD% value of 1.10% measures the distortion level 

with respect to the fundamental frequency (50 Hz). 

C.  Validation for Case 2 

 
Figure 22: Comparative assessment of DC link voltage 

controllers in system 1 and 2 in case 2 

Figure 22 presents a comparison between the behavior of DC 

link voltage of System 1 (represented in red, with P&O-based 

control) and System 2 (represented in green, with ANN-based 

control) with varying solar irradiance levels across a 3-second 

simulation. Between 0-1 second, during a constant high solar 

irradiance 1000 W/m², both systems settle at about 700 volts 

with more voltage ripples from System 1 than System 2, which 

remains smooth and stable without any ripple. At one second, 

when solar irradiance is reduced to 500 W/m², System 1 

experiences considerable voltage spike and oscillation, 

whereas System 2 responds faster and maintains control. At 

two seconds, with another drop in solar irradiance to 200 W/m², 

System 1 again faces bigger voltage fluctuations, whereas 

System 2 exhibits better damping and voltage stabilization. 

Table 3: Comparative assessment of different parameters 

in case 2 

Parameters Unit System 1 System 2 

THD% of 

current at 1 sec 

% 1.18 1.10 

THD% of 

current at 2 sec 

% 1.15 1.07 

 

VI. Conclusion 

This was an intelligent hybrid renewable system consisting 

of solar and wind, interfaced and analyzed through 

MATLAB/Simulink. The system used two MPPT control 

techniques: Perturb and Observe and an Artificial Neural 

Network-based controller. Through simulation, it was seen 

that the system based on the ANN controller is more adaptable 

and responsive to varying environmental conditions as 

compared to the classical P&O algorithm. The system under 

the ANN control was able to reduce oscillations, provide better 

dynamic response, track with greater accuracy, and therefore, 

better ensure system efficiency and grid integration stability. 

The inverter control with the use of SPWM further guaranteed 

power quality with low THD and improved voltage regulation. 

The study confirms that integrating AI-based controllers such 

as the ANN setup drastically improves power extraction from 

hybrid renewable systems while maintaining power quality 

and keeping the grid stable. However, issues of offline training, 

large-scale data dependence, and computational cost arise and 

become areas for further improvement. Future works should 

center on designing adaptive and self-learning control 

algorithms to perform online training under real-time solar 

irradiation and wind speed variations. The integration of 

hybrid AI methodologies such as ANN–Fuzzy Logic, ANN–

GWO, or ANN–LSTM can be envisioned to provide better 

tracking performance and robustness. It is necessary to 

validate such results experimentally employing a hybrid 

system prototype at a hardware level with field-deployed 

experiments. Exploring edge-based intelligent control would 

also allow cheap and scalable implementation and, thus, give 

it a broader setting in real life. 
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