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Abstract— In the present research work, emphasis has been
laid on modelling, simulating, and optimizing the performance
of a hybrid solar-wind energy system that is connected to the
grid through MATLAB/Simulink. The study aims at increasing
the system efficiency under steady and unsteady environmental
conditions and enhancing its stability with the integration of
intelligent control strategies. Two methods of converter control
are implemented and compared: one being the classical
Perturb and Observe (P&O) algorithm, and the other being an
Artificial Neural Network (ANN)-based adaptive control
approach. The hybrid system comprises PV and wind energy
units interlinked through DC-DC converters with a common
DC link and a DC-AC inverter for supplying three-phase AC
power compatible with the grid. The methodology, dynamic
modelling of PV and wind subsystems, converter design, and
inverter control using SPWM, is employed. The P&O algorithm
controls the duty cycle of the converters by perturbing them
iteratively; the ANN controller, on the other hand, uses trained
data on solar irradiance, temperature, and voltage-current
characteristics to predict and control maximum power points
in real time. Simulation under constant or variable irradiation
elucidates the better performance of ANN control with reduced
Total Harmonic Distortion (THD) in voltage (0.14%) and
current (2.10%), respective to 0.15% and 2.45% in a P&O
controlled system. In addition, an improvement of 5% will be
given to active power output by ANN control. The voltage
stability has also been enhanced, along with reducing DC link
oscillations under transient conditions. These results exemplify
that intelligent ANN controllers provide aptness, acts fast, and
improve power quality for hybrid renewable systems, giving a
better new direction for grid-interactive renewable integration
in the days to come.

Keywords — Hybrid renewable system, ANN controller,
Perturb and Observe (P&O), MATLAB/Simulink, Maximum
Power Point Tracking (MPPT), DC-DC converter, Total

Harmonic Distortion (THD).

I. INTRODUCTION

The increasing global needs for clean, sustainable, and efficient
energy sources have accelerated the development of HRES by
which multiple renewable sources such as solar PV and wind
energy are integrated to feed power into a grid in a stable
fashion [1]- [15]. Individually, both solar and wind resources
are intermittent and influenced by weather variability; however,
being complementary, they make a stronger case for reliability

and decreasing fossil fuel dependency [1], [2]. Hybrid solar-
wind systems emerge as good candidate systems for distributed
generation, rural electrification, and possibly grid support
applications.

Their potential notwithstanding, integration of the solar and
wind systems poses big challenges regarding power
management, voltage regulation, and grid stability [3]. The
variations in irradiance, temperature, and wind speed cause
drastic variations in power output leading to voltage sags,
frequency deviations, and harmonic distortions. Hence,
intelligent control strategies, along with robust optimization
algorithms, must be taken into account to guarantee the power
quality, facilitate maximum power point tracking (MPPT), and
ensure efficient operation under varying conditions [4], [5].
Recently, some investigations have engaged in more advanced
techniques such as metaheuristic optimization, artificial
intelligence, and adaptive control systems. Among these
methods, Artificial Neural Networks have grown to be
powerful tools that can specify nonlinear relationships and
adapt to changing inputs without explicit mathematical
modelling [6]. ANN-based MPPT controllers have shown a
much better dynamic response, fast convergence, and
performance when compared to traditional methods such as
Perturb and Observe and Increment Conductance [7].

In hybrid systems, ANNs are used to process environmental
data such as solar radiation, temperature, and wind speed to
predict the optimum operating point and vary the duty cycle of
the converter accordingly [8]. Adaptive control helps to
minimize oscillations around the maximum power point, lessen
response time, and reduce the effect of partial shading and
turbulence. On the other hand, classical methods like P&O,
though simple and cheap solutions, demonstrate steady-state
oscillations and lower efficiency in the face of quickly varying
environmental conditions [9].

Power quality is the other crucial aspect in hybrid renewable
systems. Renewable generation fluctuations may cause
harmonic distortion, voltage sags, swells, or frequency
deviations when fed into the grid. To compensate for such
variations, the systems have been controlled by means of
techniques such as sinusoidal pulsewidth modulation (SPWM),
space vector modulation (SVM), and intelligent inverter control
methods [10]. In the presence of nominal disturbances,
traditional control strategies usually satisfy the objectives, but
during transient disturbances or fluctuating load conditions,
they cannot perform well enough. On the other hand, intelligent
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control schemes, especially those based on ANN, have shown
good potential for voltage stability, reactive power
compensation, and THD minimization [11]. Figure 1 describes
Power system and control block diagram
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Figure 1: Power system and control block diagram
Making an emphasis on the relevance of hybrid converter
architecture yields improvements in systems. For example,
allowing the DC-DC converters for PV and wind inputs to
interface into the same DC-link guarantees proper power flow
and voltage regulation at the output of which is fed to the
inverter [12]. In addition to this, IGBT type converters and
inverters ideally enhance dynamic response and switching
efficiency. In this case, the ANN controller ought to send real-
time control signals to converters for optimum energy flow and
maintain grid synchronization even when conditions are non-
stationary [13].

Simulation and modelling tools such as MATLAB/Simulink
are fundamental in the analysis and validation of hybrid
renewable energy systems. The control strategies and power
quality parameters such as total harmonic distortion (THD) are
evaluated, with the system being tested under various
environmental circumstances before the actual control
hardware is implemented [14]. The simulation process has
shown that the ANN-based hybrid systems are much better than
the classical methods in regulating voltage, suppressing
harmonics, and harvesting energy.

Moreover, hybrid control architectures that incorporate
multiple layers of control (primary, secondary, and tertiary)
enable hierarchical coordination of distributed energy
resources. Primary control is primarily concerned with the real-
time operation of the converters. Secondary control restoration
is voltage and frequency. Tertiary control optimizes the
exchange of energy with the grid. An ANN on top of these
control layers will afford greater flexibility, contributing to the
learning process and enabling intelligent decision-making in a
dynamic grid environment.

Il. LITERATURE REVIEW

According to recent studies, it was found that hybrid deep
architectures, principally combinations of CNNs and LSTMs,
outperform traditional models in short-term power generation
and demand forecasting [16]. These models efficiently extract
the spatial and temporal dependencies, approximately 12%
reduction in RMSE, and improvement in R2 from 0.86 to 0.92
compared to standalone LSTM models. Furthermore,
regression-based deep models-Multilayer Perceptron’s (MLP)
and LSTM frameworks-have obtained MAE values of below

0.05 (normalized) and RMSE values close to 0.1 when trained
on SCADA and meteorological datasets, demonstrating their
robustness during dynamic sky and irradiance conditions [17].
Recurrent and hybrid architectures have calculated deeper
confirmation in terms of forecasting in deep learning. Two
hybrid models-the CNN-LSTM and the GRU-LSTM-are
repeatedly reported in the literature to produce better results
when compared to their standalone counterparts, with
improvements oscillating between 10 and 20% in terms of
RMSE across different datasets [18] — [20]. Feature engineering,
with features such as irradiance, temperature, humidity, and
wind speed, assists in enhancing predictive accuracy by 6-8%,
while metaheuristic optimization of the selection of input
variables helps the model quickly converge and reduces error
propagation [21].

LSTM-based models outperform classical algorithms, such as
ARIMA and basic MLP systems, with respect to RMSE and
MAE, when benchmarked across large-scale datasets,
validating the former ones' ability to learn nonlinear temporal
dependencies of renewable datasets [22]. In addition to that,
these advantages with enormous computational overheads and
longer training times limit the use of these models for real-time
applications [23]. The development of standard benchmarking
frameworks and open datasets has become crucial to ensure
reproducibility and merit-based comparison of models [24].
The hybrid dual-cascaded framework seems among the most
powerful, achieving prediction performance well above 0.90 in
R2 value, with a significantly lower RMSE score than any other
individual architecture [25]. The hybrid models are also
designed to eliminate redundant meteorological inputs through
a metaheuristic feature selection method, thereby reducing the
computational burden and enhancing generalization
performance [26]. Further, the advanced GRU-LSTM model-
based online adaptive learning approaches were able to obtain
lower RMSE values down to 0.026 p.u., with accuracies
exceeding 96% for multi-step-ahead forecasting [27], thus
creating a challenge or opportunity to be implemented in real-
time hybrid systems.

Several more Al techniques, including highly optimized
versions of MLPs, RBF networks, and SVR, are used for
forecasting renewable energy. One example of this is
Levenberg—Marquardt-optimized MLP models showing an R2
of approximately 0.91 and an RMSE improvement of around 7%
over traditional backpropagation networks [28]. RBF-based
models are also noted for their superiority in giving high
correlation coefficients (R = 0.96) with the prediction of wind
speed yet are computationally intensive during clustering and
training [29].

Moreover, evidence of a broader application of Al models
resides in their utilization in PV system fault detections and
reliability assessments. These CNN-based fault detection
models have thus far reported accuracies greater than 98%,
higher than those achieved by classic classifiers such as MLP
and SVM [30]. Likewise, hybrid architectures of deep learning
have been employed in different activities related to predicting
wind power ramping events, achieving an AUC score of 0.93
and an accuracy greater than 95%, beating GRU and MLP
baselines by about 6-8% [31].

Nevertheless, scalability, interpretability, and real-time
implementation remain the challenges for forecasting methods
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based on Al. Demanding training costs possibly restricted
deployment of DL architecture in the resource-constrained
environment, as well as the need for large amounts of labelled
data and hardware prerequisites [32]. Also, given inconsistent
data preprocessing and benchmarking techniques across studies,
conducting cross-comparisons has become difficult and

impeded standardization [33].
A lightweight Al models that can be explained and transferred
will need to be built while the predictive power has to remain

high, but with significantly reduced computational costs [34].
The integration of reinforcement learning with an online
adaptive mechanism fosters a self-learning control system to
make decisions in real-time for hybrid solar—wind energy
management [35]. With these improvements, grid stability,
operational reliability, and power quality will greatly benefit in

the next generation of intelligent renewable energy systems.

TABLE 1 ARTIFICIAL NEURAL NETWORKS FOR POWER SYSTEMS

Ref. Technique / Model Dataset / Performance Metrics Limitations
Application
[16] | CNN-LSTM hybrid Multi-site demand & | RMSE |12%, R?=0.92 High training cost, requires
weather data long historical data
[17] | MLP, LSTM regressors + | PV.SCADA + MAE = 0.046, RMSE = 0.11, R? | Sensitive to weather and sky
ensemble trees meteorological data ~(0.88-0.92 variability
[18] | CNN, LSTM, MLP Multiple PV datasets | R?=0.85-0.95 Inconsistent benchmarking
(comparative review) and preprocessing
[19] | LSTM-based forecasting | Utility-scale PV plant | R>> 0.90, RMSE | Limited to single-site
validation
[20] | LSTM, GRU, CNN- Hybrid wind—solar MSE = 0.010, R*= 0.90 Dataset-dependent; sensitive
LSTM, RF, SVR datasets to preprocessing
comparison
[21] | LSTM vs. ARIMA and Large utility PV RMSE [15-20% vs. traditional | High computational cost, long
MLP datasets models data history
[22] | LSTM with feature PV forecasting RMSE |6—-8% improvement Small dataset, hyperparameter
selection sensitivity
[23] | SCADA + NWP hybrid Regional PV sites RMSE | vs. baseline regression | Relies on real-time NWP data
LSTM availability
[24] | CNN-LSTM-MLP Solar radiation R?>0.90, RMSE | Complex architecture, long
hybrid prediction training duration
[25] | LSTM-GRU hybrid Wind and solar MAE =12.93, RMSE =21.83 Dataset limited; lacks wide
generation benchmarking
[26] | Comparative ML models | Solar generation MAE/RMSE reduced across Unclear attribution between
(ANN focus) forecasting models preprocessing and model gain
[27] | Review of RBF, MLP, Wind energy Aggregated metrics (RMSE, Review only; no new
and LSTM forecasting MAE, R?) experiments
[28] | ML/ANN technology Power systems RMSE, MAE, accuracy, Non-empirical; lacks practical
survey applications precision benchmarks evaluation
[29] | MLP with Levenberg— NREL solar RMSE =18 W/m?, R?=0.91 Overfitting risk; low
Marquardt optimization irradiance dataset scalability
[30] | MLP classifier Smart-street energy Accuracy = 92.4% Urban-use specific; non-grid
detection context
[31] | Benchmark of LSTM, Multi-renewable Detailed RMSE and R? tables Preprint; not peer-reviewed
CNN-LSTM, deep MLP | datasets
[32] | GRU-LSTM hybrid Indian renewable MAE = 0.018, RMSE = 0.026, Long training; reduced
datasets Accuracy = 96.8%, F1 =0.955 interpretability
[33] | Radial Basis Function Hybrid microgrids MAE = 0.23 m/s, RMSE = 0.34 | High computational demand
(RBF) neural network m/s, R=0.96
[34] | CNN-based PV fault PV monitoring Accuracy = 98.6%, Precision = | Requires labeled data for
detection datasets 97.9%, Recall = 98.4%, F1 = training
0.981
[35] | LSTM hybrid with Wind ramp event AUC=0.93,F1 =0.91, GPU-intensive; sensitive to
adaptive learning rate prediction Accuracy = 95.2% missing data
A.
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I11. RESEARCH OBJECTIVES

e The primary objective of this study is to design and
implement a Hybrid Solar-Wind Energy System
equipped with a Neural Network-Based Controller to
optimize power generation, improve system reliability,
and ensure stable integration with the power grid.

e To study the system under stable and dynamic input
conditions and train the model to adapt to the changes

e Toensure grid compliance by minimizing harmonics and
maintaining stable voltage and frequency levels in the
output power.

1IV. RESEARCH METHODOLOGY
A. Designing of Hybrid Energy System

A hybrid AC grid-connected system is modelled to maintain a
reliable supply of power with solar or wind energy resources
being used at any given time, depending on their real-time
forecast. The configuration allows for dynamic source
selection, increasing system dependability and reducing
interruptions. The design of the hybrid energy system is at the
heart of the methodology to elegantly integrate solar and wind
power for efficient, stable, and continuous energy delivery.
The system uses the complementary behaviour of the two
renewable sources where the availability of one can mitigates
the variability of the other, thus facilitating energy consistency
and grid resilience. Figure 2 shows the block diagram of the
designed hybrid solar-wind system, which provides power to
both the connected load and the electrical grid. The two major
renewable generation units employed in the system are the PV
array and wind turbine module. The PV module provides a DC
electric power from sunlight irradiance passed through a DC—
DC boost converter. The main function of this converter is to
increase the voltage to a level suitable for operational load; in
addition, it implements Maximum Power Point Tracking
(MPPT) control either using Perturb or Observe (P&O) or
ANN-based method to attain the maximum power under
different environmental conditions.

PV DBC "'D(t:
> 00s!
Module Converter
Wind N AC/DC DC/AC I
Module Inverter Inverter
Grid

Figure 2: Hybrid energy system topology

P&O is hugely popular as an MPPT algorithm for its ease of
implementation with low cost. Mostly this is the low power
applications like for residential and commercial applications.
In this strategy, the present duty point is decided based on
voltage and power values, i.e., the present power and voltage
values are compared with the previous. Then, by virtue of
changing the duty value, the Duty Point is steered toward the
MPP shown in figure3.
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Figure 3: Perturb and Observe (P&O) scheme for driving
the converters in hybrid system

B. ANN based control system design for converters

Artificial Neural Networks (ANNSs) refer to information-
processing systems set up via an analogy with the neural
architecture of a human brain. They are deemed capable of
extracting underlying patterns from complex datasets and
learning input—output relationships amid noise and
uncertainties. Structurally speaking, an ANN is a network of
interconnected processing elements called neurons. The
neurons are organized into three layers: input layer, hidden
layer, and output layer. The interconnection between two
neurons is represented using a synaptic weight with the
magnitude and the direction forming the signal transmitted
between two neurons; considered collectively, weights govern
how information and signal transformations are propagated
across networks. An ANN, therefore, can map input variables
to predicted output responses nonlinearly using a set of transfer
functions and can thus model complex dynamic systems
adequately. Figure 4 describes MLP structure of NN method

Input Layer

Input Datar /~— Output

Output layer

Hidden Layers

Figure 4: MLP structure of NN method

155 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025



Research Journal of Engineering Technology and Medical Science:
Available at www.rjetm.in/

rectifier DC-link inverter

s (ISSN: 2582-6212), Volume 08, Issue 04, December-2025

i
e
— bl
—

filter AC motor

sensor

{ sensors |

3
control algorithm
acquisition &
master communication

micro-
controller

Figure 5: NN controller Technique for driving converter

The system basically updates synaptic weights of a network by
the backward propagation of an error gradient through the
layers. Given that the gradient vector is the differential with
respect to all parameters of an error function, the error signal
is generally found by the difference between the network
output and the desired output. Thus, fixed outputs for the
training set must be provided; therefore, the whole training
process becomes a supervised training approach. Consider a
neuron residing in the output layer and call that neuron j.
Figure 5 NN controller Technique for driving converter
e(n) = d; —y;(n) €Y)

where j d is the desired output for neuron j and y (n) j is the
actual output for neuron j calculated by using the current
weights of the network at iteration n. For a certain input there
is a certain desired output, which the network is expected to
produce. Instantaneous value of the error energy for the neuron
j is given in Equation (2):

1
gMm) == ¢ (W €)
Since the only visible neurons are the ones in the output layer,
error signals for those neurons can be directly calculated.
Hence, the instantaneous value, € (n), of the total error energy
is the sum of all (n) j € ’s for all neurons in the output layer, as
given in Equation (3)

1 2
e =5 Y 2 ®)
jeQ
where Q is the set of all neurons in the output layer. Suppose
there are N patterns in the training set. The average squared
energy for the network is found by Equation (4)

1 N
Cw=y ), €@ )

It is worthwhile to note that the instantaneous error energy,
g(n), and consequently the average error energy, €,, Would
essentially be a function of all adjustable parameters of the
network, among which are the synaptic weights and bias
levels. Provided with this algorithm, it is indeed possible to
adjust the values of these parameters for the minimization of
€4, The backpropagation algorithm exists in two forms: one
sequential and the other batch. In sequential mode (or on-line
or stochastic), changes in the weights occur after the
presentation of every training sample; in batch mode, the

weights are updated after all samples in the training set have
been presented once--within one epoch.

C. DC-AC Converter/Inverter Modelling
The paragraph was rewritten to align with technicality,
coherence, and structure, while faithfully including all
technical details:
An inverter is the power electronic device that basically
converts a DC to an AC wave. For use in distributed energy
generation systems such as rooftop solar arrays, small-scale
microgrids, and residential power setups, the inverter
represents the interface window between the DC sources and
the AC grid. It comes in two common configurations—single-
phase and three-phase inverter. The three-phase inverter thus
has three arms, with two switching devices per arm, the
switching being performed with a 180° phase shift. Fig. 4.10
illustrates the internal structure of the three-phase inverter.
The inverter designed uses Sinusoidal Pulse Width
Modulation (SPWM) in order to generate a higher quality
sinusoidal wave and is modelled and simulated for the hybrid
solar—wind system. The control strategy for the inverter
depends on some parameters, which include the DC-link
voltage, grid voltage, grid current, and switching frequency. A
two-stage PWM regulator is implemented for control of the
signals so that both voltage and current get accurately
controlled. Measurements of the grid voltage are carried out
by a separate voltage measurement unit located at the inverter-
grid interface. VVoltage and current signals are filtered against
harmonics before being used to generate a pure sinusoidal
wave,
Dependent on operating conditions, the inverter may work in
either 180° or 120° conduction mode to provide a balanced
level of output among the three phases. The circuit acts as an
essential component in converting the DC power from the
hybrid solar-wind system to useable, stable, and fine-quality
AC power that can be connected to the grid or supplied to the
load. The addition of IGBT-based switches provides efficient
high-speed switching and a more precise control mechanism.
The inverter operation is therefore dynamically optimized in
conjunction with an ANN-based or P&O MPPT controller to
allow it to perform well and be efficient during varying
environmental conditions. Figure 6 describes Circuit diagram
of three phase inverter
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Figure 6: Circuit diagram of three phase inverter

If the upper IGBT of a leg is switched alternately with that of
the lower one (IGBT1 and IGBT4 in this example), there will
appear a voltage at the output terminal, say A, with respect to
the negative bus. Repetitions of this process are applied from
the three legs (A, B, C), apart from a 120° phase displacement,
to develop three-phase AC output. Under the ANN control, the
dynamic response developed by the IGBT gate control ensured
smooth transitions and voltage regulation that were superior to
the conventional P&O-based control

V. RESULTS AND DISCUSSION

The design and simulation of a renewable solar-wind hybrid
energy system with MATLAB/Simulink are discussed here.
Two possibilities were explored for the optimization of the
control strategy: MPPT based on P&O and one based on ANN.
The controller based on ANN features better adaptability to
changing conditions and on realizing a higher efficiency and
power stability. So, intelligent control techniques can greatly
improve the functioning of hybrid energy systems and grid
reliability.

A. Assessment with the constant input irradiation level in

hybrid system

In this case study, the solar/wind hybrid energy system is
assessed at a constant solar irradiation—in a steady and clear
weather condition. The aim is to study how each control
strategy performs in a theoretically favorable and steady solar
environment: Perturb & Observe (P&O) in System 1 and
Artificial Neural Network (ANN) in System 2. Constant
irradiation means that the solar PV module will not be
subjected to more frequent up and down movements in energy
input. Hence, it is expected that the system will settle into a
near steady-state operating point. This acts as the controlled
system necessary to test algorithm efficiencies, responses, and
accuracies to track in both systems.

Figure 7: Input irradiation of 1000W/m2 to solar system
Figure 7 Input irradiation of 1000W/m2 to solar system. The
standard test condition (STC) represents an irradiance
maintained at a constant 1000 W/m?2 as seen in the figure and
commonly used in evaluating PV systems. This level of
irradiance is considered to be under full sunlight and is
frequently used as the reference in determining the maximum

power output of a solar panel.
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Figure 8: Power output from the solar system with
constant input irradiation level
Figure 8 Power output from the solar system with constant
input irradiation level. Solar power generated, having a
maximum value of 6000 Watts, for simulation time from 0 to
3 seconds at constant solar irradiance of 1000 Watts per square
meter for case 1 situation.
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Figure 9: FFT analysis of voltage in the system 1 with
constant input irradiation level
Figure 9 portrays the Fast Fourier Transform (FFT) of the
output voltage waveform of the System 1 under constant solar
irradiance conditions (1000 W/m?). FFT is paramount for
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assessing a waveform for harmonic content, especially in
power electronic systems, as inverter switching tends to

introduce undesired frequency components.
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Figure 10: THD% of voltage in the system 1 with constant

input irradiation level
Figure 10 illustrates the THD spectrum of an AC output
voltage from System 1. This system implements a control for
the converter based on Perturb & Observe under the constant
illumination of 12000 W/m2. The main aim of this analysis is to
observe the Total Harmonic Distortion (THD) and thus the
power quality of the output voltage which has been found to
be a mere 0.15%.
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The figure 12 shows the Total Harmonic Distortion (THD%)
of the AC current waveform in System 2, with a THD% equal
to 2.10%, using the ANNs-based control approach, with
constant input irradiation of 1000 W/mz2. The THD% measures
how much of the signal's content is harmonic compared to the

fundamental (50 Hz) component in the current signal.
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Figure 13: Reactive Power in the system 2 with constant
input irradiation level

The reactive power output of System 2 under fixed solar
irradiance of 1000 W/m?2 by the ANN-based control strategy
has been shown in Figure 13. The value read is about 15.23
kilovolt-amperes reactive (kVAR).

A. Validation for case 1

Table 2: Comparative assessment of different parameters

in case 1
Parameters Units System 1 System 2
Voltage Volts (V) 400 400
THD% in Percentage 0.15 0.14
voltage (%)
Current Ampere (A) 75 75
THD% in Percentage 2.45 2.10
current (%)
Active Power Kilowatts 47.23 49.62
(KW)
Reactive Kvar 21.52 15.23
Power
Power factor - 0.91 0.956

0 00 200 300 400 500 600 700 B0 900 1000
Frequency (Hz)

Figure 11: THD% of voltage in the system 2 with constant
input irradiation level

In Figure 11, the Total Harmonic Distortion percentage

(THD %) was found to be 0.14% of the AC voltage waveform

in System 2, which incorporates the ANN-based converter

control, under fixed solar irradiance (1000 W/m?).
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Figure 12: THD% of current in the system 2 with
constant input irradiation level

B. Analysis with variable input irradiation level to the PV
system

Figure 14: Variable input irradiation level to the PV
system
Figure 14 displays solar irradiance variation (W/m2) applied to
the solar PV system over a 3-second simulation timeframe.
From 0 to 1 second, a fixed value of irradiance of 1000 W/m?
is assumed to represent clear sky conditions. At 1 second, a
sharp drop in irradiance from 1000 to 500 W/m? takes place,
simulating partial shading or a passing cloud event. At 2
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seconds, it reduces more to 200 W/mz2, representing low-light
conditions, such as heavy cloud cover or late evening hours.

L—

Figure 15: Variable PV system output power
Figure 15 shows solar power output in watts for System 1,
based on a P&O control strategy, caused by a variable solar
irradiance profile during a 3-second simulation period. This
effectively presents the dynamic behavior of System 1 in
tracking variable environmental conditions and the influence

of irradiation in the solar energy generation process.
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Figure 16: THD% in voltage in system 1 with variable

input irradiation level
Figure 16 gives the information with respect to the Total
Harmonic Distortion (THD%) which amounts to 0.05% of AC
voltage in System 1, having P&O based control and subject to
variable initiations of solar irradiance. The frequency spectrum
is obtained from FFT wherein the frequency (in Hz) is
represented along the x-axis and the y-axis shows the
magnitude of each frequency component as a percent of the
fundamental one.
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Figure 17: FFT analysis at 1 sec of AC current in system 1
with variable input irradiation level

The figure 17 presents the Fast Fourier Transform (FFT) of the

AC current waveform in System 1 at the 1-second mark,

corresponding to the period of solar irradiance shift from 1000

W/mz2 to 500 W/m2,
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Figure 18: THD% at 1 sec of AC current in system 1 with
variable input irradiation level
The figure 18 presents the Total Harmonic Distortion (THD%)
in the AC current waveform in System 1 at 1 sec, whereby the
value of solar irradiance drops from 1000 W/m2 to 500 W/mz2,
Having extracted the harmonic contents of the waveform from
the FFT analysis, the THD was found to be 1.18%. It measures
the distortion exhibited in the current waveform relative to the

fundamental component (50 Hz).
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Figure 19: THD% at 2 sec of AC current in system 1 with
variable input irradiation level
Figure 19 plots the Total Harmonic Distortion (THD%) for the
AC current waveform during System 1 at 2 sec, where the solar
irradiation diminishes from 500 to 200 W/m2. The THD is
found to be 1.15% from the harmonic components obtained by
FFT analysis, representing the distortion introduced in the
current waveform with respect to its fundamental frequency of
50 Hz.
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Figure 20: THD% in voltage in system 2 with variable
input irradiation level
Figure 20 shows that, for System 2 degradation, which is based
on Perturb and Observe (P&O) controls, the AC voltage THD%
remains almost constant at 0.05% under a variable profile of
solar irradiance.
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Figure 21: THD% at 1 sec of AC current in system 2 with
variable input irradiation level

This represents Figure 21 which presents the Total Harmonic
Distortion (THD%) of the AC current waveform in System 2
at 1 second, solar irradiance reduction from 1000 W/m? to 500
W/m2, Derived from the harmonic components analyzed by
FFT, a THD% value of 1.10% measures the distortion level
with respect to the fundamental frequency (50 Hz).

C. Validation for Case 2

Figure 22: Comparative assessment of DC link voltage
controllers in system 1 and 2 in case 2

Figure 22 presents a comparison between the behavior of DC
link voltage of System 1 (represented in red, with P&O-based
control) and System 2 (represented in green, with ANN-based
control) with varying solar irradiance levels across a 3-second
simulation. Between 0-1 second, during a constant high solar
irradiance 1000 W/mz2, both systems settle at about 700 volts
with more voltage ripples from System 1 than System 2, which
remains smooth and stable without any ripple. At one second,
when solar irradiance is reduced to 500 W/m2, System 1
experiences considerable voltage spike and oscillation,
whereas System 2 responds faster and maintains control. At
two seconds, with another drop in solar irradiance to 200 W/m2,
System 1 again faces bigger voltage fluctuations, whereas
System 2 exhibits better damping and voltage stabilization.

Table 3: Comparative assessment of different parameters

in case 2
Parameters Unit System 1 System 2
THD% of % 1.18 1.10
current at 1 sec
THD% of % 1.15 1.07
current at 2 sec

VI.Conclusion

This was an intelligent hybrid renewable system consisting
of solar and wind, interfaced and analyzed through
MATLAB/Simulink. The system used two MPPT control
techniques: Perturb and Observe and an Artificial Neural
Network-based controller. Through simulation, it was seen
that the system based on the ANN controller is more adaptable
and responsive to varying environmental conditions as
compared to the classical P&O algorithm. The system under
the ANN control was able to reduce oscillations, provide better
dynamic response, track with greater accuracy, and therefore,
better ensure system efficiency and grid integration stability.
The inverter control with the use of SPWM further guaranteed
power quality with low THD and improved voltage regulation.
The study confirms that integrating Al-based controllers such
as the ANN setup drastically improves power extraction from
hybrid renewable systems while maintaining power quality
and keeping the grid stable. However, issues of offline training,
large-scale data dependence, and computational cost arise and
become areas for further improvement. Future works should
center on designing adaptive and self-learning control
algorithms to perform online training under real-time solar
irradiation and wind speed variations. The integration of
hybrid Al methodologies such as ANN—-Fuzzy Logic, ANN-
GWO, or ANN-LSTM can be envisioned to provide better
tracking performance and robustness. It is necessary to
validate such results experimentally employing a hybrid
system prototype at a hardware level with field-deployed
experiments. Exploring edge-based intelligent control would
also allow cheap and scalable implementation and, thus, give
it a broader setting in real life.
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